Comparison of two different cooling systems in alleviating thermal and physiological strain during prolonged exercise in the heat.

Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.

Ergonomics. 2021;(1):129-138
Full text from:

Abstract

This study compared the efficacy of an ice vest comprising of water (WATER) or a water-carbon (CARBON) emulsion on thermophysiological responses to strenuous exercise in the heat. Twelve male cyclists completed three 50-minute constant workload trials (55% of peak power output, ambient temperature 30.4 ± 0.6°C) with WATER, CARBON, and without ice vest (CONTROL), respectively. The increase in core body temperature (Tcore) was lower in WATER at 40 (-0.49 ± 0.34 °C) and 50 minutes (-0.48 ± 0.48 °C) and in CARBON at 30 (-0.41 ± 0.48 °C), 40 (-0.54 ± 0.51 °C), and 50 minutes (-0.67 ± 0.62 °C) as compared to CONTROL (p < 0.05, ES > 0.8). While heart rate and blood lactate kinetics did not differ between the conditions, statistical main effects in favour of both WATER and CARBON were found for thermal sensation (condition p < 0.001 and interaction p < 0.01) and rating of perceived exertion (condition p < 0.05). Per-cooling with CARBON and WATER similarly reduced Tcore but not physiological strain during prolonged exercise in the heat. Practitioner Summary: Exercise in the heat is characterised by increases in thermophysiological strain. Both per-cooling with a novel carbon-based and a conventional water-based ice vest were shown to reduce core temperature significantly. However, due to its lower mass, the carbon-based system may be recommended especially for weight-bearing sports.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata